0

Russian-US crew launches on fast track to the space station

Posted on

MOSCOW (AP) — A trio of space travelers launched successfully to the International Space Station, for the first time using a fast-track maneuver to reach the orbiting outpost in just three hours.

NASA’s Kate Rubins along with Sergey Ryzhikov and Sergey Kud-Sverchkov of the Russian space agency Roscosmos lifted off as scheduled Wednesday morning from the Russia-leased Baikonur space launch facility in Kazakhstan for a six-month stint on the station.

For the first time, they tried a two-orbit approach and docked with the space station in just a little over three hours after lift-off. Previously it took twice as long for crews to reach the station.


They will join the station’s NASA commander, Chris Cassidy, and Roscosmos cosmonauts Anatoly Ivanishin and Ivan Vagner, who have been aboard the complex since April and are scheduled to return to Earth in a week.

Speaking during Tuesday’s pre-launch news conference at Baikonur, Rubins emphasized that the crew spent weeks in quarantine at the Star City training facility outside Moscow and then on Baikonur to avoid any threat from the coronavirus.

“We spent two weeks at Star City and then 17 days at Baikonur in a very strict quarantine,” Rubins said. “During all communications with crew members, we were wearing masks. We made PCR tests twice and we also made three times antigen fast tests.”

She said she was looking forward to scientific experiments planned for the mission.

“We’re planning to try some really interesting things like bio-printing tissues and growing cells in space and, of course, continuing our work on sequencing DNA,” Rubins said.

Ryzhikov, who will be the station’s skipper, said the crew will try to pinpoint the exact location of a leak at a station’s Russian section that has slowly leaked oxygen. The small leak hasn’t posed any immediate danger to

0

Engineering a battery fast enough to make recharging like refueling

Posted on

Layers of phosphorene sheets form black carbon.
Enlarge / Layers of phosphorene sheets form black carbon.

Right now, electric vehicles are limited by the range that their batteries allow. That’s because recharging the vehicles, even under ideal situations, can’t be done as quickly as refueling an internal combustion vehicle. So far, most of the effort on extending the range has been focused on increasing a battery’s capacity. But it could be just as effective to create a battery that can charge much more quickly, making a recharge as fast and simple as filling your tank.

There is no shortage of ideas about how this might be arranged, but a paper published earlier this week in Science suggests an unusual way that it might be accomplished: using a material called black phosphorus, which forms atom-thick sheets with lithium-sized channels in it. On its own, black phosphorus isn’t a great material for batteries, but a Chinese-US team has figured out how to manipulate it so it works much better. Even if black phosphorus doesn’t end up working out as a battery material, the paper provides some insight into the logic and process of developing batteries.

Paint it black

So, what is black phosphorus? The easiest way to understand it is by comparisons to graphite, a material that’s already in use as an electrode for lithium-ion batteries. Graphite is a form of carbon that’s just a large collection of graphene sheets layered on top of each other. Graphene, in turn, is a sheet formed by an enormous molecule composed of carbon atoms bonded to each other, with the carbons arranged in a hexagonal pattern. In the same way, black phosphorus is composed of many layered sheets of an atom-thick material called phosphorene.

But there are key differences between the materials. To begin with, phosphorus is a larger atom with more